
AI4SEC
Tackling Cybersecurity Network Security through AI/ML

Dr. Pedro Casas

Senior Scientist

Data Science & Artificial Intelligence

AIT Austrian Institute of Technology @Vienna

AI4SEC

We are Losing the Battle against
Cybercrime

▪ Cybercrime as a country 3rd largest economy behind US and China
in 2021 (Cybercrime could cost 10.5 trillion USD by 2025)

▪ Operational complexity and diversity – cyberattack surface growth
outpacing humans’ ability to secure it

▪ Need for (more) automated approaches with less human
intervention to improve cyber defenses

nowadays
Internet’s landscape

has drastically changed

P. Fiadino – PhD Defense – Deceber 10th, 2015............... Slide #3

AI/ML to the Resecue
Extensive research harnessing the capabilities of AI/ML

to improve security solutions

but, the success and speed of adoption of AI/ML in
the cybersecurity practice is rather slow…

…especially as compared to the success of AI/ML in
natural domains (NLP, image processing, etc)

What is Limiting
AI/ML Success in Networking?

What is Blocking AI Success in Networking?

▪ Data Complexity: the complexity (and heterogeneity) of the data related to Internet-like
networks is one of the most significant bottlenecks to AI4NETS

▪ The Internet, and in general large-scale networks, are a complex tangle of networks,
technologies, applications, services, devices and end-users

▪ AI has so far shown very successful results generally in data from more predictable and
easy to understand sources (natural sources)

What is Blocking AI Success in Networking?

▪ Diversity of Network Data: besides complexity, network data often exhibits much
more diversity than one would intuitively expect

learn here apply here apply here

learn here

apply herelearn here

What is Blocking AI Success in Networking?

▪ Data Dynamics: networking data is non-stationary, generally comes in the form of
data streams, and is full of constant concept drifts

time

What is Blocking AI Success in Networking?

▪ Lack of Ground Truth: in the wild networking data is usually non-labeled

▪ Lack of Standardized and Representative Datasets: datasets are generally biased,
difficult to find appropriate public datasets to assess AI4NETS

▪ There is no IMAGENET or the like in Networking

▪ Network data labeling, and even data interpretation, is too complex for humans,
even for domain experts (e.g., malware vs benign traffic instead of cat vs dog)

▪ Easier for naturally generated data: images, text, audio

What is Blocking AI Success in Networking?

▪ Lack of Interpretability: this is a general problem of ML models (e.g., DL provides
beautiful black-boxes)…but the issue is even more complex in AI4NETS

▪ To improve trust, the end-user (humans) has to trust model predictions, for
example, by understanding which inputs lead to a specific output, but generally
difficult to interpret networking features

▪ The lack of interpretability and trust stops AI deployments:

▪ Network security – AI4SEC

▪ Dynamic Traffic Engineering – AI4NETTE

▪ Dynamic network instantiation (NFV) and (re)-configuration (SDN) – AI4SELFNET

What is Blocking AI Success in Networking?
▪ AI for cybersecurity is a double-edged sword: a security solution or a weapon

used by attackers (needs much more research)

▪ Learning occurs in an Adversarial Setting: services obfuscate and modify their
functioning to bypass monitoring and avoid traffic engineering policies

▪ It becomes even more trickier to learn, when the adversary constantly tries to
fool the learner

▪ Not only malign actors, but standard services: Skype, QUIC, etc.

What is Blocking AI Success in Networking?

▪ Robust Learning: lack of formal guarantees (formal methods), especially in safety-
critical contexts (cybersecurity)

▪ Data and Model bias:

▪ The AI/ML model user is biased, or unaware of the limitations of AI/ML: model
evaluation/testing, model certification, correlation vs causality

data is biased: partial or
misrepresentation of real system

models are biased: assumptions or
hypotheses of behavior, mathematical
properties, lack of transparency

Complex
system

What is Blocking AI Success in Networking?

▪ Lack of Learning Generalization: as a consequence of previous issues, it becomes
extremely difficult in the networking practice to learn models which can
generalize to operational environments

Pedro

Organization of the Talk
Dealing with Some of these Challenges

▪ Deep Learning for Malware Detection – Avoid Feature Engineering

▪ Generative Models for Anomaly Detection – Avoid Traffic Modeling

▪ Explainable Artificial Intelligence (XAI) – Interpret Model Decisions

▪ Super Learning for Network Security – Avoid Model Decision

▪ Adaptive/Stream Learning for NetSec – Deal with Concept Drifts

Organization of the Talk
Dealing with Some of these Challenges

▪ Deep Learning for Malware Detection – Avoid Feature Engineering

▪ Generative Models for Anomaly Detection – Avoid Traffic Modeling

▪ Explainable Artificial Intelligence (XAI) – Interpret Model Decisions

▪ Super Learning for Network Security – Avoid Model Decision

▪ Adaptive/Stream Learning for NetSec – Deal with Concept Drifts

Artificial Intelligence – As Smart as a Donut!

▪ Machine Learning is still very stupid – the big revolution is on
big data processing and data availability/accessibility

▪ Current ML benefits are fundamentally due to machines ability to blindly:
▪ compute lots of math operations per second
▪ handle large amounts of data
▪ deal with data in high-dimensional spaces

▪ A lot of data required to “learn“ simple logical inter-relations

▪ Shallow Learning: less data but human expert knowledge required, to
properly guide the feature engineering process

▪ Deep Learning: automated feature engineering (representation learning)
but needs much more data

RawPower
we explore deep learning for blind malware detection in network traffic

Shallow Learning vs Deep Learning

Basic Concepts of RawPower

▪ The input to the Deep Learning model is RAW – only byte-streams

▪ No need to define tailored, domain-knowledge-based input features

▪ Different architectures to analyze both packet-based and flow-based byte
aggregations

▪ Models for binary malware detection – fully supervised-based training

RawPower

malware

benign

Raw Input Representations

▪ Input representation of the data, as well as network architecture, are both
key elements to consider when building a DL model

▪ We take two types of raw input representations: packets and flows. Decimal
normalized representation of every byte of every packet is a different input

▪ Packet representation: trim or zero-pad each packet to first n bytes▪ Flow representation: matrix-like input, first m packets x first n bytes

Deep Learning
Architectural Principles

▪ The core layers used for both models are basically two: convolutional and recurrent

▪ Convolutional, to build the feature representation of the spatial data inside the packets and
flows

▪ Recurrent layers are used together with the convolutional ones to allow the model keeping
track of temporal information

▪ Fully-connected layers to deal with the different feature combinations

▪ Batch Normalization: layer inputs are normalized for each mini-batch. As a result: higher
learning rates can be used, model less sensitive to initialization and also adds regularization

▪ Dropout: randomly drop units (along with their connections) from the neural network during
training. A very efficient way to perform model averaging

DL Architectures – Packets

▪ Raw Packets Architecture:
▪ n is set to first 1024 bytes

▪ two 1D-CNN layers of 32 and 64 filters (size 5) respectively

▪ MP - max pooling layer (size 8)

▪ LSTM layer with 200 neurons

▪ two fully-connected layers of 200 neurons each

▪ binary cross-entropy as loss function

▪ spatial and normal batch normalization layers after each 1D-CNN and FC layers to ease
training

▪ dropout layers to add regularization to the model

DL Architectures – Flows

▪ Raw Flows Architecture: we go for a simpler model, with less features
▪ n is set to first 100 bytes, and m to first 2 packets

▪ one 1D-CNN layers of 32 filter (size 5)

▪ two fully-connected layers of 50 and 100 neurons each

▪ binary cross-entropy as loss function

▪ spatial and normal batch normalization layers

▪ dropout layers to add regularization to the model

Evaluations

▪ All evaluations run on top of Big-DAMA cluster (distributed CPU)

▪ Keras framework running on top of TensorFlow

▪ Dataset: malware and normal traffic captures (pcap) performed by the
Stratosphere IPS Project of the CTU University of Prague

▪ 250.000 raw packet instances, 70.000 raw flow instances

▪ 80% of the samples for training, 10% for validation and 10% for testing

▪ Compare performance to highly expressive Random Forest:
▪ same raw inputs
▪ 100 trees
▪ max depth and instances per leaf set for high expression
▪ selected based on great outperformance in state of the art

RawPower – Packet Representation

▪ Malware consists of 10 different malware types, collected at controlled
environment

▪ ROC curves for both RawPower and RF

▪ Both models using the same raw
packet inputs

▪ Performance is not good at the
packet-level

▪ Little gain w.r.t. a simple RF model

RawPower – Flow Representation vs Shallow ML

▪ Training and validation evolution over 10 epochs

▪ Much better performance at the flow level

▪ RawPower can detect almost 98% of the malware flows with a FPR < 0.5%

▪ Shallow models not able to capture the underlying relations

RawPower – Flow Representation vs Expert Features

▪ Comparison against traditional RF-based model, which uses highly
engineered input features, extracted from domain knowledge

▪ Both models provide comparable
results

▪ The key advantage of RawPower
is to rely directly on the usage of
bytestream raw data as input

▪ Input representation learning: no
the need for feature engineering

Organization of the Talk
Dealing with Some of these Challenges

▪ Deep Learning for Malware Detection – Avoid Feature Engineering

▪ Generative Models for Anomaly Detection – Avoid Traffic Modeling

▪ Explainable Artificial Intelligence (XAI) – Interpret Model Decisions

▪ Super Learning for Network Security – Avoid Model Decision

▪ Adaptive/Stream Learning for NetSec – Deal with Concept Drifts

Different univariate time series of the
same system

Anomalies in an univariate time series

Anomaly Detection in Multivariate Time-Series

▪ Anomaly Detection (AD) is, by definition, an unsupervised process (detect what is
different from the majority – the baseline)

▪ Baseline construction (i.e., system modeling) is complex and error prone,
especially when dealing with multi-dimensional system characterization

▪ Solution: delegate the baseline construction to generative models

Generative Models

▪ Given training data, generate new samples from same distribution

▪ The problem of generative models is about learning pmodel(x) similar to
pdata(x)

▪ Generative model learning is about density estimation:

▪ Explicit density estimation: explicitly define and solve for pmodel(x)

▪ Implicit density estimation: learn model that can sample from pmodel(x)
w/o explicitly defining it

Generative Adversarial Networks (GANs)

▪ Implicit density estimation through game-theoretic approach

▪ Learn to generate samples from training distribution through 2-players (minimax)
game

▪ Problem: want to sample from potentially complex, high-dimensional training
distribution. No direct way to do this!

▪ Solution: sample from a simple distribution, e.g. random noise. Learn
transformation to training distribution, using a neural network

▪ Generator network: tries to
fool the discriminator by
generating real-looking
instances from random noise

▪ Discriminator network: tries
to distinguish between real
and fake instances

Two different generative models for AD in multi-variate time series

▪ Net-GAN: Recurrent Neural Networks (LSTM) trained through GANs

▪ Net-VAE: Variational Auto-Encoders (VAE) using feed-forward NNs
▪ VAEs improve Auto-Encoders by regularizing the latent-space enabling generative process

▪ Input samples: matrix with n (number of variables) x T (length of sequence)

Generative Models for MV-TS Anomaly Detection

▪ Net-GAN AD can be done both through the generator (G) and the
discriminator (D)

Training Dataset
G LS

TM

Gaussian Noise

D LS
TM

01

Training
phase

Network Anomaly Detection with Net-GAN

normal anomaly

real generated

R
ea

l
G

en
e

ra
te

d

Generator Discriminator

In
p

u
t

O
u

tp
u

t

Normal Anomaly Anomaly

Discrimination loss

Examples on Real (Mobile) ISP Network Data

Net-GAN application phase

▪ Net-GAN AD generator (G) residual loss

▪ Net-GAN AD discriminator (D) discrimination loss

▪ Net-VAE architecture:
▪ standard encoder and decoder functions

▪ encoder/decoder using 3-layer FF networks

▪ detection on residual loss

𝑋

𝑋∗

Alignment

𝑧

Reconstruction

Decoder

Encoder

Network Anomaly Detection with Net-VAE

SWaT (CPS measurement)

Anomaly Detection with Net-GAN and Net-VAE

CICIDS2017 (SYN-NET measurements)

Organization of the Talk
Dealing with Some of these Challenges

▪ Deep Learning for Malware Detection – Avoid Feature Engineering

▪ Generative Models for Anomaly Detection – Avoid Traffic Modeling

▪ Explainable Artificial Intelligence (XAI) – Interpret Model Decisions

▪ Super Learning for Network Security – Avoid Model Decision

▪ Adaptive/Stream Learning for NetSec – Deal with Concept Drifts

EXplainable AI (XAI) – Why Should I Trust You?

▪ ML models mostly are black boxes (exceptions: linear models,
decision trees, etc.) – e.g.: some popular ML models have 10s of
millions of parameters!

▪ Models are evaluated off-line before deployment on available test
datasets – data @runtime might change (concept drift)

▪ Humans want to understand model’s behavior to gain trust
(applicability in the practice)
▪ trusting an individual model’s prediction

▪ trusting a model (inspect a set of representative individual predictions)

▪ Explainable AI: approaches capable to explain models and individual
predictions, by tracking back to the inputs leading to a certain output

Why XAI?

▪ Ideally, ML models should be self-explanatory: improve end-user understanding
and trust, by offering simple explanations of the ”whys” of certain decision

▪ Only few models are self-explanatory:

model complexity

se
lf

–e
xp

la
n

at
o

ry

A Simple XAI Example

▪ Application Example: AI-supported disease diagnosis

▪ Explainer: LIME - Local Interpretable Model-agnostic Explanations

▪ LIME approach: builds an interpretable model that is locally faithful
to the classifier under analysis

▪ Other approaches: SHAP, LRP (NNs), PDP, etc.

LIME in a Nutshell – Sampling for Local Exploration

▪ Let f be an unknown complex decision function (blue/pink background)

▪ The bold red-cross (x) is the instance
we want to explain

▪ LIME samples instances z around x,
weighted by some similarity measure
Dx Dx(z) is higher for instances
closer to x

▪ Using model f, gets the
corresponding predictions f(z)

▪ Finally, it uses z and f(z) to build an
interpretable model g (e.g, linear)
around x

▪ g is interpretable, locally faithful
to f (captured by Dx), and model
agnostic (uses f(z) as labels)

▪ robust to sampling noise, thanks
to Dx

LIME Examples (I) – Model Comparison/Selection

▪ Task: word-based email classification, Christianity or Atheism

▪ 2 models (Algorithm 1 vs Algorithm 2), which one is better?

▪ Algorithm 2 is better than Algorithm 1 in terms of accuracy in validation…

▪ …but Algorithm 2 makes predictions for arbitrary reasons…Algorithm 1 is better

▪ Performance metrics should be carefully considered

LIME Examples (II) – Model Performance Evaluation

▪ Task: image classification, using Google’s pre-trained Inception CNN
architecture

▪ Figs. (b,c,d) report super-pixel explanations provided by LIME

▪ Top 3 classes: Electric Guitar (p = 0.32), Acoustic Guitar (p = 0.24), and
Labrador (p = 0.21)

▪ The image is wrongly classified, but explanations provide trust in the
model, as they are reasonable

LIME Examples (III) – Discover Biased Data

▪ Task: train a classifier to distinguish between Wolves and Huskies

▪ Biased data (e.g., undesirable strong correlations) wrong classifier

▪ Hard to identify by looking at the raw data and predictions

▪ Bias@training: all pictures of
Wolves had snow in background

▪ The classifier performs well
according to cross-validation in
this biased dataset...

▪ …but explanations of individual predictions show that the model learnt a
biased pattern: if snow wolf, else Husky

Organization of the Talk
Dealing with Some of these Challenges

▪ Deep Learning for Malware Detection – Avoid Feature Engineering

▪ Generative Models for Anomaly Detection – Avoid Traffic Modeling

▪ Explainable Artificial Intelligence (XAI) – Interpret Model Decisions

▪ Super Learning for Network Security – Avoid Model Decision

▪ Adaptive/Stream Learning for NetSec – Deal with Concept Drifts

Ensemble Learning for Network Security

▪ Which is the best model or category of models for a specific learning
task?

▪ Deep Learning? Not obvious in the context of Network traffic
Monitoring and Analysis (NMA)

▪ Our claim: “multiple-eyes principle” ensemble learning models

▪ We explore the application of ensemble learning models to multiple
NMA problems…

▪ …following a particularly promising model known as the Super
Learner

Ensemble Learning for Network Security

ensemble learning:
combine multiple (base)
learning models to obtain
better performance.

▪ If a set of base learners do not capture the true prediction function (the oracle),
ensembles can give a good approximation to that oracle function.

▪ Ensembles perform better than the individual base algorithms.

▪ Multiple approaches to ensemble learning, including bagging (decrease variance),
boosting (decrease bias), and stacking (improve predictive performance)

Super Learner

▪ General ensemble learning approaches might be prone to over-fitting.

▪ Super Learner [Van der Laan’07]: stacking ensemble learning meta-model that
minimizes over-fitting likelihood using a variant of cross-validation.

▪ Finds the optimal combination of a collection of prediction algorithms
performs asymptotically as well – or better, than any of the base learners.

Super Learner

▪ General ensemble learning approaches might be prone to over-fitting.

▪ Super Learner [Van der Laan’07]: stacking ensemble learning meta-model that
minimizes over-fitting likelihood using a variant of cross-validation.

▪ Finds the optimal combination of a collection of prediction algorithms
performs asymptotically as well – or better, than any of the base learners.

Super Learner – How Does it Work?

▪ 2-steps approach (training and validation of Super Learner):

1st
 given a (1) dataset X(k,l) with labels Y(k) (2), and a set of (3) n base

learners (e.g., DTs, ANNs, SVM, etc.), build a (4) new dataset {Z(k,n),
Y(k)} (by cross validation) to (5) train the Super Learner model m(z,β)

(1)

(2)
(3)

(4)

(5)

Super Learner – How Does it Work?

▪ 2-steps approach (training and validation of Super Learner):

(1)

(2)
(3)

(4)

(5)

2nd
 train each of the n base learners using training/validation split of

{X,Y}, and compute predictions (on top of validation set) using meta-
model m(z,β) (trained in step 1)

GML Learning for NMA

▪ The Super Learner meta-model could be whatever algorithm

▪ The original work [Van der Laan’07] uses a simple minimum square linear
regression model as the example Super Learner.

▪ Problem: how to define weights to perform properly in every dataset?

▪ GML Learning: computes weights with an exponential probability of
success, reducing the influence of poor base learning models.

base learners

base learner accuracy

control variable: reduces weight

for low accuracy predictors

We compare several models for NMA:

▪ We take 5 standard base learning models: linear SVM, CART, k-NN, ANN
(MLP) and Naïve Bayes

▪ We build 4 different Super Learners:

1. Logistic regression (binary output 0/1)

2. Weighted Majority Voting (MV):

▪ MVuniform: same weight to each base learner

▪ MVaccuracy: weights are computed using base learner accuracy

3. Decision Tree meta-learner (CART)

▪ Boosting (ensemble learning): AdaBoost tree

▪ Bagging (ensemble learning): Bagging tree and Random Forest

▪ GML Learning

Models Benchmarking

Five network measurement problems for model benchmarking:

1. NS – detection of network attacks in WIDE/MAWI traffic (transpacific links)

2. AD – detection of smartphone-apps anomalies in cellular networks (data
captured at core cellular network)

3. QoE-P – QoE prediction in cellular networks (data captured at smartphones)

4. QoE-M – QoE-modeling for video streaming (smartphones public datasets)

5. PPC – Internet-paths dynamics tracking – prediction of path changes (M-Lab
traceroute measurements)

Multiple NMA Problems

▪ We focus on two NMA problems:

▪ Detection of Network Attacks in WIDE/MAWI network traffic

▪ Detection of App-related Anomalies in an Operational Cellular Network

▪ WIDE Network traffic using MAWI labels

▪ traffic traces captured daily on backbone link between Japan and the US.

▪ MAWI labels: uses a combination of four traditional anomaly detectors to
label the collected traffic by majority voting.

▪ 5 attack classes: DDoS, flashcrowd, netscans (TCP/UDP), flooding.

▪ The dataset spans a full week of traffic traces collected in late 2015;
traces are split in consecutive time slots of 1 second.

▪ 245 features describe the traffic in each of these slots.

▪ These include throughput, packet sizes, IP addresses and ports, transport
protocols, flags (empirical distributions, sampled at multiple percentiles),
and more

(some) Evaluation Datasets

▪ We focus on two NMA problems:

▪ Detection of Network Attacks in WIDE/MAWI network traffic

▪ Detection of App-related Anomalies in an Operational Cellular Network

(some) Evaluation Datasets

▪ Synthetically generated dataset for AD in cellular networks

▪ derived from real cellular ISP measurements (traffic measurements
collected during 6-months in 2014)

▪ Anomaly Templates, derived from real app-related anomalies observed in
the cellular traffic in this paper, anomaly types E1, E2 and E3

▪ Evaluation labelled dataset: 1 month of normal operation traffic, and 16
different anomaly instances of E1, E2 and E3 types, with different
intensity (number of involved devices varies from 0.5% to 20%)

▪ 36 features describing 10’ time slots

▪ These include FQDNs, DNS error flags, APN, operative system and
manufacturer (empirical distributions, sampled at multiple percentiles)

Benchmark for Network Security

Super LearnersBase Learners

▪ Super Learners (SLs)
outperform both base
learners, as well as the RF
model

▪ The CART SL performs the
worst regression-based
models are more accurate for
SL

▪ GML slightly outperforms
other SLs

Benchmark for Network Security

▪ We take the Area Under the ROC Curve (AUC) as benchmarking metric

▪ SLs performance increase is higher when base learners perform worse

▪ Even if slightly, the GML model systematically outperforms other models

Benchmark for Network Security

▪ Similar observations are
drawn from the AD
benchmark

▪ Anomalies E1 and E3 are
easier to detect, and base
learners provide already very
accurate results

▪ E2 anomalies are stealthier
(long duration, small
volume), and GML provides a
clear performance increase

Benchmark for Anomaly Detection

Full Benchmark in multiple NMA Problems

▪ GML does not only outperforms the most accurate first level learners…

▪ …but also outperforms other ensemble-learning models based on bagging,
boosting and stacking

▪ The GML model performs the best for all scenarios, suggesting a potentially
good approach to go for by default in similar NMA problems

Organization of the Talk
Dealing with Some of these Challenges

▪ Deep Learning for Malware Detection – Avoid Feature Engineering

▪ Generative Models for Anomaly Detection – Avoid Traffic Modeling

▪ Explainable Artificial Intelligence (XAI) – Interpret Model Decisions

▪ Super Learning for Network Security – Avoid Model Decision

▪ Adaptive/Stream Learning for NetSec – Deal with Concept Drifts

Adaptive or Stream-based Learning (credits to Albert Bifet)

▪ Let us go a bit deeper into the problem of concept drift in supervised
learning

▪ And overview the main principles how to deal with concept drift

▪ Concept Drift (non-stationarity): the statistical properties defining the
relationships between input data and output target change over time.

▪ This causes problems because the predictions become less accurate as
time passes.

concept drift

Concept Drift: a Trap for (off-line) Supervised Learning

data X(d)

Xtraining

Ytraining

Xnew

Ynew

model M

training

application

training: learn a

mapping function
Ytraining = M (Xtraining)

application: use learnt

function/model on

newly, unseen data
Ynew = M (Xnew)

…but what happens

if/when Xnew is derived

from a different

distribution d’ d?

data X(d’)

(off-line) Supervised Learning under Concept Drifts

▪ Detection of network attacks in MAWI – WIDE network

▪ 10-fold cross-validation, high detection performance with low FPR…

(off-line) Supervised Learning under Concept Drifts

▪ …accuracy remains high for the first 3 weeks (training on first 3 days)…

▪ …but models accuracy start to rapidly degrade over time

Learning in an Online Setting – Stream/Adaptive Learning

▪ In an online setting, data arrives continuously, as a stream of samples

▪ Adaptive learning consists of learning from continuous data in efficient
way, using a limited amount of memory

▪ Adaptive learning approaches work in a limited amount of time

time

t1 t2 t3 t4 tn

As time evolves, the learning model is updated/re-
trained if needed prediction

adapted
model

Adaptation Strategies

▪ Two main approaches for adaptation:

▪ re-train the model by carefully selecting the best data

▪ adjust the previously learnt model incrementally

time

t1 t2 t3 t4 tn

Desired Properties of a System to Handle Concept Drift

▪ Adapt fast to concept drift

▪ Robust to noise, but adaptive to changes

▪ Capable to deal with reoccurring contexts (avoid catastrophic
forgetting)

▪ Use limited resources in terms of time and memory

What types of Concept Drift can we get?

▪ The change to the data could take any form

▪ It is conceptually easier to consider the case where there is some temporal
consistency to the change

▪ Incremental drift: one could assume that data collected within a specific time
period show the same relationship and that this changes smoothly over time

▪ But of course, other types of changes may include:

▪ A gradual drift over time

▪ A recurring or cyclical drift

▪ A sudden or abrupt drift

Adaptation Strategies to Concept Drift

▪ A taxonomy of approaches (A. Bifet, J. Gama)

triggering evolving
memory

strategy

ensemble

single
model

change detection
and follow up

adapt at
every step

reactive
forgetting

maintain
memory

Adaptation Strategies to Concept Drift

▪ A taxonomy of approaches (A. Bifet, J. Gama)

triggering evolving
memory

strategy

ensemble

single
model

detectors
• variable windows

contextual
• dynamic integration
• meta–learning

forgetting
• fixed windows
• instance weighting

dynamic ensemble
• dynamic

combination rules

Adaptation Strategies to Concept Drift

▪ A taxonomy of approaches (A. Bifet, J. Gama)

evolving
memory

strategy

ensemble

single
model

detectors
• variable windows

contextual
• dynamic integration
• meta–learning

forgetting
• forget old data
• re-train at fixed rate
• fixed windows
• instance weighting

dynamic ensemble
• dynamic

combination rules

triggering

Fixed-size Training Window

time
train predict

time

time

time

Adaptation Strategies to Concept Drift

▪ A taxonomy of approaches (A. Bifet, J. Gama)

evolving
memory

strategy

ensemble

single
model

detectors
• detect a change and

discard the past
• variable windows

contextual
• dynamic integration
• meta–learning

forgetting
• forget old data
• re-train at fixed rate
• fixed windows
• instance weighting

dynamic ensemble
• dynamic

combination rules

triggering

Variable Training Window, Change Detection and Cut

time

time
re-train model predict

abrupt change detection

time
discard old data

Adaptation Strategies to Concept Drift

▪ A taxonomy of approaches (A. Bifet, J. Gama)

evolving
memory

strategy

ensemble

single
model

detectors
• variable windows

contextual
• dynamic integration
• meta–learning

forgetting
• forget old data
• re-train at fixed rate
• fixed windows
• instance weighting

dynamic ensemble
• build many models
• dynamically combine
• dynamic combination

rules

triggering

Dynamic Ensemble Learning

time

model 1

time

model 2

time

model 3

time

model 4

Combine
(e.g. majority
voting)

dynamically
adapt
the ensemble
combination

Adaptation Strategies to Concept Drift

▪ A taxonomy of approaches (A. Bifet, J. Gama)

evolving
memory

strategy

ensemble

single
model

detectors
• variable windows

contextual
• build many models
• switch among them

based on input
• meta–learning

forgetting
• forget old data
• re-train at fixed rate
• fixed windows
• instance weighting

dynamic ensemble
• build many models
• dynamically combine
• dynamic combination

rules

triggering

Contextual (Meta) Approaches

partition training data to build multiple models

set 1 model 1

set 2 model 2

set 3 model 3

Contextual (Meta) Approaches

find which partition better represents the
new instance, and use the corresponding model

set 1 model 1

set 3 model 3

set 2 model 2

Adaptation Strategies to Concept Drift

▪ A taxonomy of approaches (A. Bifet, J. Gama)

evolving
memory

strategy

ensemble

single
model

detectors
• detect a change and

discard the past
• variable windows

contextual
• build many models
• switch among them

based on input
• meta–learning

forgetting
• forget old data
• re-train at fixed rate
• fixed windows
• instance weighting

dynamic ensemble
• build many models
• dynamically combine
• dynamic combination

rules

triggering

Adaptation Strategies to Concept Drift

▪ A taxonomy of approaches (A. Bifet, J. Gama)

evolving
memory

strategy

ensemble

single
model

detectors

contextual

forgetting

dynamic ensemble

triggering

abrupt drift abrupt drift

gradual driftrecurring drift

Adaptive/Stream Learning Models for NetSec

▪ Implement an adaptive approach using single models and a change-
detection algorithm to detect concept drifts

▪ Take ADWIN (Adaptive WINdowing) to detect changes

▪ ADWIN automatically grows the learning window when no change is
apparent, and shrinks it when concept drifts are detected

▪ Properties: automatically adjusts its window size to the optimum
balance point between reaction time and small variance

Adaptive WINdowing algorithm

The idea of ADWIN is straightforward:

▪ it keeps a sliding window W with the most recently observed data

▪ whenever two large enough sub-windows of W exhibit distinct enough
averages, the older portion of the window is dropped.

Adaptive/Stream Learning Models for NetSec

▪ Adaptive learning algorithms trained on labelled data, using ADWIN

Stream-based Learning Models Performance

▪ Multiple stream machine learning models, using ADWIN

▪ Detection accuracy, normalized to batch-based algorithms performance

Stream-based Learning Models Performance

▪ Multiple stream machine learning models, using fixed windowing

▪ AUC (ROC curve), normalized to batch-based algorithms performance

▪ Different window sizes tested

Improving Stream-based Active Learning by Reinforcement (RAL)

▪ How do we deal with the limited amount of labeled data?

▪ Active Learning (AL): aims at labelling only the most informative samples

▪ AL can be applied to the streaming scenario, to complement previous
approaches and reduce the amount of labeled data

▪ RAL – improves stream-based AL by Reinforcement Learning (RL)

▪ Standard AL bases its decisions based on model uncertainty

▪ RAL permits to additionally learn in a feedback loop, based on the
effectiveness of the requested labels

▪ Reward in case asking oracle was informative (models would have predicted
wrong label)

▪ Penalty otherwise

RAL Principles and Components

▪ RAL is based on an ensemble of models

▪ RAL makes use of contextual-bandit algorithms (EXP4) to tune the
decision powers of the different models depending on their behavior

▪ RAL uses a ε-greedy approach to handle concept drift and improve the
exploration/exploitation trade-off

RAL Principles and Components

▪ The querying decision (ask or not for a label) is taken
based on model prediction uncertainty and a threshold

▪ Each algorithm in the ensemble (committee) gives its advice, based on its
prediction uncertainty

▪ RAL takes into account the decisions of the members + their decision power

▪ Obtained feedback influences the querying threshold:

▪ In case of penalty, the threshold decreases…..otherwise, it slightly increases

RAL Evaluation vs. State of the Art

▪ RAL vs RVU (Randomized Variable Uncertainty) and simple random sampling
(RS)

▪ Evaluation on data extracted from MAWILab – in the wild network security

▪ We divide each dataset into three consecutive parts:

▪ Initial training set (variable size)

▪ Validation set (last 30%), to evaluate the classifiers

▪ Streaming set (remaining part of the dataset), for picking samples to learn from

RAL Evaluation vs. State of the Art – Prediction Accuracy

Flood attack Netscan attack

RAL Evaluation vs. State of the Art – Querying Cost

Flood attack Netscan attack

RAL

RVU

So What’s Next?

▪ We’re still far from making AI immediately applicable to Cybersecurity
▪ Limitations of learning process, data, models

▪ Lack of generalization

▪ Continual learning challenges – catastrophic forgetting and transfer

▪ Lack of real knowledge generation – building simple mappings is easy

▪ Portability of models to real deployments – plug & play?

▪ Effective Machine Learning – a mix of interesting challenges:
▪ Transfer learning

▪ Explainable AI (XAI)

▪ Multi-task learning

▪ Meta learning

▪ Hierarchical learning

▪ And back right to the start: the successful application of AI to network
measurement problems is still on an early stage

Graph Neural Networks (GNNs)

▪ In a nutshell: deep learning architecture for graph-structured data

▪ Lots of domains where graph-structured data makes much more sense: social
networks, knowledge graphs, recommender systems, communication networks

▪ Typical application of GNN: node classification every node in the graph is
associated with a label, and we want to predict the label of the nodes without
ground-truth

▪ Have so far proved very powerful in modeling the
dependencies between nodes in graph-like structures

▪ About 4% of ICLR 2020 submitted papers
using GNNs (2585 submissions)

▪ Graph Neural Networking Challenges 2020/2021
RouteNET: a GNN architecture to estimate
per-source-destination performance metrics in
communication networks

Thanks

Dr. Pedro Casas

Data Science & Artificial Intelligence

AIT Austrian Institute of Technology @Vienna

pedro.casas@ait.ac.at

http://pcasas.info

AI4SEC

