

AI4SEC Tackling Cybersecurity Network Security through AI/ML

Dr. Pedro Casas Senior Scientist Data Science & Artificial Intelligence AIT Austrian Institute of Technology @Vienna

We are *Losing the Battle* against Cybercrime

- Cybercrime as a country -> 3rd largest economy behind US and China in 2021 (Cybercrime could cost 10.5 rollion USD by 2025)
- Operational complexity and diversity cyberattack surface growth outpacing humans' ability to secure it
- Need for (more) automated approaches with less human intervention to improve cyber defenses

AI/ML to the Resecue

Extensive research harnessing the capabilities of AI/ML to improve security solutions

but, the success and *speed of adoption of AI/ML* in the cybersecurity practice is rather slow...

...especially as compared to the success of AI/ML in *natural* domains (NLP, image processing, etc)

What is *Limiting* AI/ML Success in Networking?

- Data Complexity: the complexity (and heterogeneity) of the data related to Internet-like networks is one of the most significant bottlenecks to AI4NETS
- The Internet, and in general large-scale networks, are a complex tangle of networks, technologies, applications, services, devices and end-users

 AI has so far shown very successful results generally in data from more predictable and easy to understand sources (natural sources)

 Diversity of Network Data: besides complexity, network data often exhibits much more diversity than one would intuitively expect

 Data Dynamics: networking data is non-stationary, generally comes in the form of data streams, and is full of constant concept drifts

- Lack of Ground Truth: in the wild networking data is usually non-labeled
- Lack of Standardized and Representative Datasets: datasets are generally biased, difficult to find appropriate public datasets to assess AI4NETS

- There is no IMAGENET or the like in Networking
- Network data labeling, and even data interpretation, is too complex for humans, even for domain experts (e.g., malware vs benign traffic instead of cat vs dog)
 - Easier for naturally generated data: images, text, audio

- Lack of Interpretability: this is a general problem of ML models (e.g., DL provides beautiful black-boxes)...but the issue is even more complex in AI4NETS
- To improve trust, the end-user (humans) has to trust model predictions, for example, by understanding which inputs lead to a specific output, but generally difficult to interpret networking features

- The lack of interpretability and trust stops AI deployments:
 - Network security AI4SEC
 - Dynamic Traffic Engineering AI4NETTE
 - Dynamic network instantiation (NFV) and (re)-configuration (SDN) AI4SELFNET

- AI for cybersecurity is a *double-edged sword*: a security solution or a *weapon* used by attackers (needs much more research)
- Learning occurs in an Adversarial Setting: services obfuscate and modify their functioning to bypass monitoring and avoid traffic engineering policies

- It becomes even more trickier to learn, when the *adversary* constantly tries to fool the learner
- Not only malign actors, but standard *services*: Skype, QUIC, etc.

 Robust Learning: lack of formal guarantees (formal methods), especially in safetycritical contexts (cybersecurity)

The AI/ML model user is biased, or unaware of the limitations of AI/ML: model evaluation/testing, model certification, correlation vs causality

 Lack of Learning Generalization: as a consequence of previous issues, it becomes extremely difficult in the networking practice to learn models which can generalize to operational environments

The Self-Driving Network					
Human-Driven Automation	>	Event-driven Automation	>	Machine-Driven Automation	Autonomy
Standard-based network interfaces and data models		 Telemetry for Actionable Information 		 Use sophisticated algorithms (statistics) Pre-programed 	 Integrated machine- learning algorithms into the system
Automate network provisioning and management		 Integration with Full IT infrastructure (Orchestration, etc.) 		machines makes decisions and drives network change	Adaptive machine decisions drive network change
Simplify network operations		 Rule-based Actions driven by events 		Humans make decisions where machines cannot	Human supervision, no active intervention

Organization of the Talk Dealing with Some of these Challenges

- Deep Learning for Malware Detection Avoid Feature Engineering
- Generative Models for Anomaly Detection Avoid Traffic Modeling
- Explainable Artificial Intelligence (XAI) Interpret Model Decisions
- Super Learning for Network Security Avoid Model Decision
- Adaptive/Stream Learning for NetSec *Deal with Concept Drifts*

Organization of the Talk Dealing with Some of these Challenges

- Deep Learning for Malware Detection Avoid Feature Engineering
- Generative Models for Anomaly Detection Avoid Traffic Modeling
- Explainable Artificial Intelligence (XAI) Interpret Model Decisions
- Super Learning for Network Security Avoid Model Decision
- Adaptive/Stream Learning for NetSec *Deal with Concept Drifts*

Artificial Intelligence – As Smart as a Donut!

 Machine Learning is still very stupid – the big revolution is on big data processing and data availability/accessibility

• **Current ML benefits** are fundamentally due to machines ability to **blindly**:

- compute lots of math operations per second
- handle large amounts of data
- deal with data in high-dimensional spaces
- A lot of data required to "learn" simple logical inter-relations
- Shallow Learning: less data but human expert knowledge required, to properly guide the feature engineering process
- Deep Learning: automated feature engineering (representation learning) but needs much more data

RawPower

we explore **deep learning** for *blind* malware detection in network traffic

Shallow Learning vs Deep Learning

Basic Concepts of RawPower

- The input to the Deep Learning model is RAW only byte-streams
- No need to define tailored, domain-knowledge-based input features

- Different architectures to analyze both packet-based and flow-based byte aggregations
- Models for binary malware detection fully supervised-based training

Raw Input Representations

- Input representation of the data, as well as network architecture, are both key elements to consider when building a DL model
- We take two types of raw input representations: packets and flows. Decimal normalized representation of every byte of every packet is a different input
- Flow representation: matrix-like input, first m packets x first n bytes

Deep Learning Architectural Principles

- The core layers used for both models are basically two: convolutional and recurrent
- Convolutional, to build the feature representation of the spatial data inside the packets and flows
- Recurrent layers are used together with the convolutional ones to allow the model keeping track of temporal information
- Fully-connected layers to deal with the different feature combinations
- Batch Normalization: layer inputs are normalized for each mini-batch. As a result: higher learning rates can be used, model less sensitive to initialization and also adds regularization
- Dropout: randomly drop units (along with their connections) from the neural network during training. A very efficient way to perform model averaging

DL Architectures – Packets

Raw Packets Architecture:

- **n** is set to first **1024 bytes**
- two 1D-CNN layers of 32 and 64 filters (size 5) respectively
- MP max pooling layer (size 8)
- LSTM layer with 200 neurons
- two fully-connected layers of 200 neurons each
- binary cross-entropy as loss function
- spatial and normal batch normalization layers after each 1D-CNN and FC layers to ease training

DL Architectures – Flows

- Raw Flows Architecture: we go for a simpler model, with less features
 - **n** is set to first **100 bytes**, and **m** to first **2 packets**
 - one 1D-CNN layers of 32 filter (size 5)
 - two fully-connected layers of 50 and 100 neurons each
 - binary cross-entropy as loss function
 - spatial and normal batch normalization layers
 - dropout layers to add regularization to the model

Evaluations

- All evaluations run on top of **Big-DAMA cluster** (distributed CPU)
- Keras framework running on top of TensorFlow
- Dataset: malware and normal traffic captures (pcap) performed by the Stratosphere IPS Project of the CTU University of Prague
- 250.000 raw packet instances, 70.000 raw flow instances
- 80% of the samples for training, 10% for validation and 10% for testing
- Compare performance to highly expressive Random Forest:
 - same raw inputs
 - 100 trees
 - max depth and instances per leaf set for high expression
 - selected based on great outperformance in state of the art

RawPower – Packet Representation

 Malware consists of 10 different malware types, collected at controlled environment

- **ROC curves** for both RawPower and RF
- Both models using the same raw packet inputs
- Performance is not good at the packet-level
- Little gain w.r.t. a simple RF model

RawPower – Flow Representation vs Shallow ML

- Training and validation evolution over 10 epochs
- Much better performance at the flow level
- RawPower can detect almost 98% of the malware flows with a FPR < 0.5%</p>
- Shallow models not able to capture the underlying relations

RawPower – Flow Representation vs Expert Features

- Comparison against traditional RF-based model, which uses highly engineered input features, extracted from domain knowledge
- Both models provide comparable results
- The key advantage of RawPower is to rely directly on the usage of bytestream raw data as input
- Input representation learning: no the need for feature engineering

Organization of the Talk Dealing with Some of these Challenges

- Deep Learning for Malware Detection Avoid Feature Engineering
- Generative Models for Anomaly Detection Avoid Traffic Modeling
- Explainable Artificial Intelligence (XAI) Interpret Model Decisions
- Super Learning for Network Security Avoid Model Decision
- Adaptive/Stream Learning for NetSec *Deal with Concept Drifts*

Anomaly Detection in Multivariate Time-Series

Anomalies in an univariate time series

TIME

Different univariate time series of the same system

- Anomaly Detection (AD) is, by definition, an unsupervised process (detect what is different from the majority the baseline)
- Baseline construction (i.e., system modeling) is complex and error prone, especially when dealing with multi-dimensional system characterization
- Solution: delegate the baseline construction to generative models

Generative Models

Given training data, generate new samples from same distribution

- Generative model learning is about density estimation:
 - Explicit density estimation: explicitly define and solve for p_{model}(x)
 - Implicit density estimation: learn model that can sample from p_{model}(x) w/o explicitly defining it

Generated samples $\sim p_{model}(x)$

Training data $\sim p_{data}(x)$

Generative Adversarial Networks (GANs)

- Implicit density estimation through game-theoretic approach
- Learn to generate samples from training distribution through 2-players (minimax) game
- Problem: want to sample from potentially complex, high-dimensional training distribution. No direct way to do this!
- Solution: sample from a simple distribution, e.g. random noise. Learn transformation to training distribution, using a neural network

- Generator network: tries to fool the discriminator by generating real-looking instances from random noise
- **Discriminator** network: tries to distinguish between real and fake instances

Two different generative models for *AD in multi-variate time series*

- *Net-GAN*: Recurrent Neural Networks (LSTM) trained through GANs
- *Net-VAE*: Variational Auto-Encoders (VAE) using feed-forward NNs
 - VAEs improve Auto-Encoders by *regularizing the latent-space* → enabling *generative process*
- Input samples: matrix with n (number of variables) x T (length of sequence)

Network Anomaly Detection with Net-GAN

Net-GAN AD can be done both through the generator (G) and the discriminator (D)

Net-GAN architecture and its application.

Examples on Real (Mobile) ISP Network Data

Net-GAN application phase

Net-GAN AD generator (G) → residual loss

■ Net-GAN AD discriminator (D) → discrimination loss

Network Anomaly Detection with Net-VAE

- Net-VAE architecture:
 - standard encoder and decoder functions
 - encoder/decoder using 3-layer FF networks
 - detection on *residual loss*

Net-VAE architecture.

Anomaly Detection with Net-GAN and Net-VAE

CICIDS2017 (SYN-NET measurements)

Organization of the Talk Dealing with Some of these Challenges

- Deep Learning for Malware Detection Avoid Feature Engineering
- Generative Models for Anomaly Detection Avoid Traffic Modeling
- Explainable Artificial Intelligence (XAI) Interpret Model Decisions
- Super Learning for Network Security Avoid Model Decision
- Adaptive/Stream Learning for NetSec *Deal with Concept Drifts*

EXplainable AI (XAI) – Why Should I Trust You?

- ML models → mostly are black boxes (exceptions: linear models, decision trees, etc.) e.g.: some popular ML models have 10s of millions of parameters!
- Models are evaluated off-line before deployment on available test datasets – data @runtime might change (concept drift)
- Humans want to understand model's behavior to gain trust (applicability in the practice)
 - trusting an individual model's prediction
 - trusting a model (inspect a set of representative individual predictions)
- **Explainable AI:** approaches capable to explain models and individual predictions, by tracking back to the inputs leading to a certain output
Why XAI?

- Ideally, ML models should be self-explanatory: improve end-user understanding and trust, by offering simple explanations of the "whys" of certain decision
- Only few models are self-explanatory:

model complexity

A Simple XAI Example

• **Application Example:** Al-supported disease diagnosis

- Explainer: LIME Local Interpretable Model-agnostic Explanations
- LIME approach: builds an interpretable model that is locally faithful to the classifier under analysis
- Other approaches: SHAP, LRP (NNs), PDP, etc.

LIME in a Nutshell – Sampling for Local Exploration

Let **f** be an unknown complex decision function (blue/pink background)

- g is interpretable, locally faithful to f (captured by D_x), and model agnostic (uses f(z) as labels)
- robust to sampling noise, thanks to D_x

complex model **f**

- The **bold red-cross (x)** is the instance we want to explain
- LIME samples instances z around x, weighted by some similarity measure D_x → D_x(z) is higher for instances closer to x
- Using model **f**, gets the corresponding predictions **f(z)**
- Finally, it uses z and f(z) to build an interpretable model g (e.g, linear) around x

LIME Examples (I) – Model Comparison/Selection

- Task: word-based email classification, Christianity or Atheism
- 2 models (Algorithm 1 vs Algorithm 2), which one is better?

- Algorithm 2 is better than Algorithm 1 in terms of accuracy in validation...
- ...but Algorithm 2 makes predictions for arbitrary reasons...Algorithm 1 is better
- Performance metrics should be carefully considered

LIME Examples (II) – Model Performance Evaluation

Task: image classification, using Google's pre-trained Inception CNN architecture

(a) Original Image (b) Explaining *Electric guitar* (c) Explaining *Acoustic guitar* (d) Explaining *Labrador*

- Figs. (b,c,d) report super-pixel explanations provided by LIME
- Top 3 classes: *Electric Guitar* (*p* = 0.32), *Acoustic Guitar* (*p* = 0.24), and *Labrador* (*p* = 0.21)
- The image is wrongly classified, but explanations provide trust in the model, as they are reasonable

LIME Examples (III) – Discover Biased Data

- Task: train a classifier to distinguish between Wolves and Huskies
- Biased data (e.g., **undesirable strong correlations**) → wrong classifier
- Hard to identify by looking at the raw data and predictions

(a) Husky classified as wolf

(b) Explanation

- Bias@training: all pictures of
 Wolves had snow in background
- The classifier performs well according to cross-validation in this biased dataset...

…but explanations of individual predictions show that the model learnt a biased pattern: if snow → wolf, else → Husky

Organization of the Talk Dealing with Some of these Challenges

- Deep Learning for Malware Detection Avoid Feature Engineering
- Generative Models for Anomaly Detection Avoid Traffic Modeling
- Explainable Artificial Intelligence (XAI) Interpret Model Decisions
- Super Learning for Network Security Avoid Model Decision
- Adaptive/Stream Learning for NetSec *Deal with Concept Drifts*

Ensemble Learning for Network Security

- Which is the best model or category of models for a specific learning task?
- Deep Learning? Not obvious in the context of Network traffic Monitoring and Analysis (NMA)
- Our claim: "*multiple-eyes principle*" → ensemble learning models
- We explore the application of ensemble learning models to multiple NMA problems...
- ...following a particularly promising model known as the Super Learner

Ensemble Learning for Network Security

ensemble learning:

combine multiple (base) learning models to obtain better performance.

- If a set of base learners do not capture the true prediction function (the oracle), ensembles can give a good approximation to that oracle function.
- Ensembles perform better than the individual base algorithms.
- Multiple approaches to ensemble learning, including bagging (decrease variance), boosting (decrease bias), and stacking (improve predictive performance)

Super Learner

- General ensemble learning approaches might be prone to over-fitting.
- Super Learner [Van der Laan'07]: stacking ensemble learning meta-model that minimizes over-fitting likelihood using a variant of cross-validation.
- Finds the optimal combination of a collection of prediction algorithms → performs asymptotically as well or better, than any of the base learners.

Super Learner

- General ensemble learning approaches might be prone to over-fitting.
- Super Learner [Van der Laan'07]: stacking ensemble learning meta-model that minimizes over-fitting likelihood using a variant of cross-validation.
- Finds the optimal combination of a collection of prediction algorithms → performs asymptotically as well or better, than any of the base learners.

Super Learner – How Does it Work?

- 2-steps approach (training and validation of Super Learner):
 - 1st → given a (1) dataset X(k,l) with labels Y(k) (2), and a set of (3) n base learners (e.g., DTs, ANNs, SVM, etc.), build a (4) new dataset {Z(k,n), Y(k)} (by cross validation) to (5) train the Super Learner model m(z, 6)

Super Learner – How Does it Work?

2-steps approach (training and validation of Super Learner):

2nd → train each of the *n* base learners using training/validation split of {X,Y}, and compute predictions (on top of validation set) using metamodel m(z, B) (trained in step 1)

GML Learning for NMA

- The Super Learner meta-model could be whatever algorithm
- The original work [Van der Laan'07] uses a simple minimum square linear regression model as the example Super Learner.
- **Problem**: how to **define weights** to **perform** properly in **every dataset**?
- GML Learning: computes weights with an exponential probability of success, reducing the influence of poor base learning models.

Models Benchmarking

B₿G DAMA

We compare several models for NMA:

 We take 5 standard base learning models: linear SVM, CART, k-NN, ANN (MLP) and Naïve Bayes

We build 4 different Super Learners:

- **1.** Logistic regression (binary output 0/1)
- 2. Weighted Majority Voting (MV):
 - MVuniform: same weight to each base learner
 - MVaccuracy: weights are computed using base learner accuracy
- **3. Decision Tree meta-learner** (CART)
- Boosting (ensemble learning): AdaBoost tree
- Bagging (ensemble learning): Bagging tree and Random Forest
- GML Learning

Multiple NMA Problems

Five network measurement problems for model benchmarking:

- 1. NS *detection of network attacks* in WIDE/MAWI traffic (transpacific links)
- AD detection of smartphone-apps anomalies in cellular networks (data captured at core cellular network)
- 3. QoE-P QoE prediction in cellular networks (data captured at smartphones)
- 4. QoE-M QoE-modeling for video streaming (smartphones public datasets)
- PPC Internet-paths dynamics tracking prediction of path changes (M-Lab traceroute measurements)

(some) Evaluation Datasets

- We focus on two NMA problems:
 - Detection of Network Attacks in WIDE/MAWI network traffic
 - Detection of App-related Anomalies in an Operational Cellular Network

WIDE Network traffic using MAWI labels

- traffic traces captured daily on backbone link between Japan and the US.
- MAWI labels: uses a combination of four traditional anomaly detectors to label the collected traffic by majority voting.
- 5 attack classes: DDoS, flashcrowd, netscans (TCP/UDP), flooding.
- The dataset spans a full week of traffic traces collected in late 2015; traces are split in consecutive time slots of 1 second.
- 245 features describe the traffic in each of these slots.
- These include throughput, packet sizes, IP addresses and ports, transport protocols, flags (empirical distributions, sampled at multiple percentiles), and more

(some) Evaluation Datasets

- We focus on two NMA problems:
 - Detection of Network Attacks in WIDE/MAWI network traffic
 - Detection of App-related Anomalies in an Operational Cellular Network
- Synthetically generated dataset for AD in cellular networks
 - derived from real cellular ISP measurements (traffic measurements collected during 6-months in 2014)
 - Anomaly Templates, derived from real app-related anomalies observed in the cellular traffic → in this paper, anomaly types E1, E2 and E3
 - Evaluation labelled dataset: 1 month of normal operation traffic, and 16 different anomaly instances of E1, E2 and E3 types, with different intensity (number of involved devices varies from 0.5% to 20%)
 - **36 features** describing 10' time slots
 - These include FQDNs, DNS error flags, APN, operative system and manufacturer (empirical distributions, sampled at multiple percentiles)

Benchmark for Network Security

(d) Netscan UDP.

(e) Netscan TCP-ACK.

Benchmark for Network Security

- Super Learners (SLs) outperform both base learners, as well as the RF model
- The CART SL performs the worst → regression-based models are more accurate for SL
- GML slightly outperforms other SLs

Benchmark for Network Security

	DDoS	HTTP	S-TCP	S-UDP	Flooding
CART	0.745	0.856	0.909	0.923	0.928
Naïve Bayes	0.730	0.655	0.897	0.933	0.917
MLP	0.907	0.993	0.979	0.983	0.989
SVM	0.883	0.992	0.941	0.995	0.968
kNN	0.720	0.936	0.936	0.924	0.944
Random Forest	0.827	0.905	0.941	0.913	0.930
Bagging Tree	0.823	0.908	0.911	0.915	0.921
AdaBoost Tree	0.892	0.991	0.923	0.920	0.927
logreg	0.926	0.956	0.952	0.980	0.987
MVaccuracy	0.924	0.992	0.971	0.993	0.993
MVuniform	0.923	0.991	0.970	0.992	0.991
CART	0.867	0.992	0.933	0.985	0.954
GML	0.935	0.998	0.983	0.997	0.993

- We take the Area Under the ROC Curve (AUC) as benchmarking metric
- SLs performance increase is higher when base learners perform worse
- Even if slightly, the **GML model systematically outperforms other models**

Benchmark for Anomaly Detection

	E1	E2	E3
CART	0.993	0.873	0.978
Naïve Bayes	0.956	0.861	0.959
MLP	0.997	0.944	0.996
SVM	0.996	0.944	0.995
kNN	0.995	0.859	0.963
Random Forest	0.999	0.876	0.993
Bagging Tree	0.996	0.885	0.983
AdaBoost Tree	0.998	0.945	0.995
logreg	0.999	0.952	0.996
MVaccuracy	0.999	0.948	0.996
MVuniform	0.999	0.945	0.996
CART	0.997	0.924	0.994
GML	0.999	0.963	0.997

- Similar observations are drawn from the AD benchmark
- Anomalies E1 and E3 are easier to detect, and base learners provide already very accurate results
- E2 anomalies are stealthier (long duration, small volume), and GML provides a clear performance increase

Full Benchmark in multiple NMA Problems

	AD	NS	QoE-P	QoE-M	PPC	ALL
CART	0.948 (3.9%)	0.872 (11.1%)	0.956 (3.7%)	0.952 (4.4%)	0.966 (1.9%)	0.935 (5.4%)
Naïve Bayes	0.925 (6.2%)	0.826 (15.8%)	0.752 (24.2%)	0.754 (24.3%)	0.924 (6.3%)	0.819 (17.1%)
MLP	0.979 (0.7%)	0.970 (1.1%)	0.887 (10.7%)	0.882 (11.5%)	0.964 (2.1%)	0.929 (6.0%)
SVM	0.978 (0.8%)	0.955 (2.6%)	0.786 (20.8%)	0.790 (20.7 %)	0.886 (10.1%)	0.869 (12.1%)
kNN	0.939 (4.8%)	0.892 (9.1%)	0.788 (20.6%)	0.793 (20.4%)	0.920 (6.7%)	0.854 (13.6%)
Random Forest	0.956 (3.1%)	0.903 (7.9%)	0.983 (1%)	0.978 (1.8%)	0.969 (1.6%)	0.957 (3.2%)
Bagging Tree	0.954 (3.2 %)	0.895 (8.7 %)	0.976 (1.7%)	0.975 (2.1%)	0.973 (1.3%)	0.953 (3.6%)
AdaBoost Tree	0.979 (0.7%)	0.930 (5.2%)	0.982 (1.1%)	0.984 (1.2%)	0.875 (11.2%)	0.954 (3.5%)
logreg	0.982 (0.4%)	0.960 (2.1%)	0.981 (1.1%)	0.978 (1.9%)	0.941 (4.5%)	0.970 (1.9%)
MVaccuracy	0.981 (0.5%)	0.974 (0.7 %)	0.984 (0.9%)	0.991 (0.6%)	0.972 (1.3%)	0.981 (0.8%)
MVuniform	0.980 (0.6%)	0.973 (0.8%)	0.980 (1.3%)	0.984 (1.2%)	0.980 (0.5%)	0.979 (1.0%)
CART	0.971 (1.5%)	0.946 (3.6%)	0.956 (3.6%)	0.960 (3.6%)	0.968 (1.8%)	0.959 (3.0%)
GML	0.986	0.981	0.993	0.996	0.985	0.989

- GML does not only outperforms the most accurate first level learners...
- ...but also outperforms other ensemble-learning models based on bagging, boosting and stacking
- The GML model performs the best for all scenarios, suggesting a potentially good approach to go for by default in similar NMA problems

Organization of the Talk Dealing with Some of these Challenges

- Deep Learning for Malware Detection Avoid Feature Engineering
- Generative Models for Anomaly Detection Avoid Traffic Modeling
- Explainable Artificial Intelligence (XAI) Interpret Model Decisions
- Super Learning for Network Security Avoid Model Decision
- Adaptive/Stream Learning for NetSec *Deal with Concept Drifts*

Adaptive or Stream-based Learning (credits to Albert Bifet)

- Let us go a bit deeper into the problem of concept drift in supervised learning
- And overview the main principles how to deal with concept drift

- Concept Drift (non-stationarity): the statistical properties defining the relationships between input data and output target change over time.
- This causes problems because the predictions become less accurate as time passes.

Concept Drift: a Trap for (off-line) Supervised Learning


```
training: learn a
mapping function
Y<sub>training</sub> = M (X<sub>training</sub>)
```

application: use learnt
function/model on
newly, unseen data
Y_{new} = M (X_{new})

...but what happens if/when X_{new} is derived from a different distribution $d' \neq d$?

(off-line) Supervised Learning under Concept Drifts

- Detection of network attacks in MAWI WIDE network
- 10-fold cross-validation, high detection performance with low FPR...

Figure 1: Detection performance (ROC curves) achieved by the different models for detection of network attacks.

(off-line) Supervised Learning under Concept Drifts

- ...accuracy remains high for the first 3 weeks (training on first 3 days)...
- ...but models accuracy start to rapidly degrade over time

Figure 2: Performance drift for the off-line trained models along time. Training is done on the first 3 days of data.

Learning in an Online Setting – Stream/Adaptive Learning

- In an online setting, data arrives continuously, as a stream of samples
- Adaptive learning consists of learning from continuous data in efficient way, using a limited amount of memory
- Adaptive learning approaches work in a limited amount of time

Adaptation Strategies

- Two main approaches for adaptation:
 - re-train the model by carefully selecting the best data
 - adjust the previously learnt model incrementally

Desired Properties of a System to Handle Concept Drift

- Adapt fast to concept drift
- Robust to noise, but adaptive to changes
- Capable to deal with reoccurring contexts (avoid catastrophic forgetting)
- Use limited resources in terms of time and memory

What types of Concept Drift can we get?

The change to the data could take any form

- It is conceptually easier to consider the case where there is some temporal consistency to the change
- Incremental drift: one could assume that data collected within a specific time period show the same relationship and that this changes smoothly over time

Adaptation Strategies to Concept Drift

A taxonomy of approaches (A. Bifet, J. Gama)

strategy memory

> reactive forgetting single model

ensemble

maintain

memory

Adaptation Strategies to Concept Drift

Adaptation Strategies to Concept Drift

Fixed-size Training Window

time		dict		ain	tr	
time]				
_						
time	-					
time						

Variable Training Window, Change Detection and Cut

Dynamic Ensemble Learning

Contextual (Meta) Approaches

set 1 \rightarrow model 1

set 3 → model 3

partition training data to build multiple models

Contextual (Meta) Approaches

set 1 \rightarrow model 1

set 2 \rightarrow model 2

set 3 \rightarrow model 3

find which partition better represents the new instance, and use the corresponding model

A taxonomy of approaches (A. Bifet, J. Gama)		
``、 <mark>strategy</mark>		
memory	triggering	evolving
single model	 detectors detect a change and discard the past variable windows 	forgetting forget old data re-train at fixed rate fixed windows instance weighting
ensemble	 contextual build many models switch among them based on input meta-learning 	 dynamic ensemble build many models dynamically combine dynamic combination rules

Adaptive/Stream Learning Models for NetSec

- Implement an adaptive approach using single models and a changedetection algorithm to detect concept drifts
- Take ADWIN (Adaptive WINdowing) to detect changes
- ADWIN automatically grows the learning window when no change is apparent, and shrinks it when concept drifts are detected
- Properties: automatically adjusts its window size to the optimum balance point between reaction time and small variance

Adaptive WINdowing algorithm

The idea of ADWIN is straightforward:

- it keeps a sliding window W with the most recently observed data
- whenever two *large enough* sub-windows of W exhibit *distinct enough* averages, the older portion of the window is dropped.

- 1: initialize window W
- 2: for each t > 0 do
- 3: $W \leftarrow W \cup \{x_t\}$ (add x_t to the head of W)
- 4: **repeat**drop instances from the tail of W
- 5: **until** $\|\hat{\mu}_{W_0} \hat{\mu}_{W_1}\| \ge \epsilon$ for every split of $W = W_0 \cdot W_1$
- 6: return $\hat{\mu}_W$
- 7: end for

where $\hat{\mu}_{W_0}$ and $\hat{\mu}_{W_1}$ are the averages of the instances in W_0 and W_1 respectively.

Adaptive/Stream Learning Models for NetSec

Adaptive learning algorithms trained on labelled data, using ADWIN

Stream-based Learning Models Performance

- Multiple stream machine learning models, using ADWIN
- Detection accuracy, normalized to batch-based algorithms performance

Detected changes are marked with dashed lines.

Stream-based Learning Models Performance

- Multiple stream machine learning models, using *fixed windowing*
- AUC (ROC curve), normalized to batch-based algorithms performance
- Different window sizes tested

Improving Stream-based Active Learning by Reinforcement (RAL)

- How do we deal with the limited amount of labeled data?
- Active Learning (AL): aims at labelling only the most informative samples
- AL can be applied to the streaming scenario, to complement previous approaches and reduce the amount of labeled data

- RAL improves stream-based AL by Reinforcement Learning (RL)
 - Standard AL bases its decisions based on *model uncertainty*
 - RAL permits to additionally learn in a feedback loop, based on the effectiveness of the requested labels
 - Reward in case asking oracle was informative (models would have predicted wrong label)

FEEDBACK

Penalty otherwise

RAL Principles and Components

- RAL is based on an ensemble of models
- RAL makes use of contextual-bandit algorithms (EXP4) to tune the decision powers of the different models depending on their behavior
- RAL uses a ε-greedy approach to handle concept drift and improve the exploration/exploitation trade-off

RAL Principles and Components

- The querying decision (ask or not for a label) is taken
 based on model prediction uncertainty and a threshold
- Each algorithm in the ensemble (committee) gives its advice, based on its prediction uncertainty
- RAL takes into account the decisions of the members + their decision power
- Obtained feedback influences the querying threshold:
 - In case of penalty, the threshold decreases.....otherwise, it slightly increases

RAL Evaluation vs. State of the Art

- RAL vs RVU (Randomized Variable Uncertainty) and simple random sampling (RS)
- Evaluation on data extracted from MAWILab in the wild network security
- We divide each dataset into three consecutive parts:
 - Initial training set (variable size)
 - Validation set (last 30%), to evaluate the classifiers
 - Streaming set (remaining part of the dataset), for picking samples to learn from

RAL Evaluation vs. State of the Art – Prediction Accuracy

RAL Evaluation vs. State of the Art – Querying Cost

So What's Next?

- We're still far from making AI immediately applicable to Cybersecurity
 - Limitations of learning process, data, models
 - Lack of generalization
 - Continual learning challenges catastrophic forgetting and transfer
 - Lack of real knowledge generation building simple mappings is *easy*
 - Portability of models to real deployments plug & play?

• *Effective Machine Learning* – a mix of interesting challenges:

- Transfer learning
- Explainable AI (XAI)
- Multi-task learning
- Meta learning
- Hierarchical learning
- And back right to the start: the successful application of AI to network measurement problems is still on an early stage

Graph Neural Networks (GNNs)

- In a nutshell: deep learning architecture for graph-structured data
- Lots of domains where graph-structured data makes much more sense: social networks, knowledge graphs, recommender systems, communication networks
- Typical application of GNN: node classification → every node in the graph is associated with a label, and we want to predict the label of the nodes without ground-truth
- Have so far proved very powerful in modeling the dependencies between nodes in graph-like structures
- About 4% of ICLR 2020 submitted papers using GNNs (2585 submissions)
- Graph Neural Networking Challenges 2020/2021 RouteNET: a GNN architecture to estimate per-source-destination performance metrics in communication networks

Thanks

Dr. Pedro Casas Data Science & Artificial Intelligence AIT Austrian Institute of Technology @Vienna

> pedro.casas@ait.ac.at http://pcasas.info