Evolving Autonomous Networks

Sep 13th, 2021 Laurent Ciavaglia Autonomous Networking Research & Innovation Dept. Rakuten Mobile, Inc.

Rakuten Mobile Innovation Studio

Evolving Autonomous Networks

Content presented here is based on my colleagues work and art They are much more expert than me on the inner workings and dirty details **All hard questions and complaints should be sent to them :-)** Thank you !

Rakuten Mobile

Rakuten Mobile's Network Expands

96% population coverage in sight in 2021 as soon as semiconductor supply issue recovers Estimated population coverage including sites with contracts signed have already reached 96% coverage

4G population coverage

As of end of June 2021

Night-time population coverage ratio
 The area map may not match the actual population coverage depending on the timing of aggregation ar

Google Data SIO, NOAA, U

Low Cost / Investment Unparalleled Productivity

High productivity compared to other 3 MNOs

Rakuten Mobile

Highly Advanced Large Mobile EDGE Data Network

R

Rakuten Communications Platform (RCP)

Global Deployment of Cloud-native 5G Network

Rakuten Communications Platform

RCP E2E Full Stack View

Rakuten Mobile Innovation Studio

Dedicated to making Truly Autonomous Networks a reality

Team of PhD researchers, SW engineers & experienced Telco professionals

Why Autonomous Networks?

Peter Baer

Why Autonomous Networks?

What is Autonomy?

No single, universally applicable and agreed definition of autonomous networking But we can refer to common principles and properties

Self-CHOP [*]

Self-configuration

- Adapt to changing conditions by changing their own configurations
- Addition and removal of components or resources without service disruption

Self-optimization

 Constantly monitor predefined system goals and performance levels to ensure that all systems run at optimum levels

Self-healing

- Recognize and diagnose deviations from normal conditions and take action to normalize them
- Proactively circumvent issues that could cause service disruptions

Self-protection

 Incorporation of intelligence to recognize and circumvent security threats

[*] "The vision of autonomic computing" by J.O. Kephart et al.

The four 'A'

- Automatic, because machines are more proficient for systematic and exhaustive tasks than humans
- Aware, to gain situational awareness and guide reactive/proactive decision processes
- Adaptive, to change its decisions and operations to maintain value delivery ; because anomalies and (new) attacks are constantly detected
- Autonomy, as each event translates into different local actions

The four 'A'

Collectively, the four properties qualify an autonomic system and are referred to as the 4 'A'.

Sometimes, a fifth 'A' is added:

- **Abstraction,** to enable coordination between heterogeneous equipment

Ultimately, this boils down to the essential coupling of automation with the intelligence that will drive it towards cognitive operation.

Tackling the automation challenge is necessary but not sufficient. Automation alone can only adapt within the function pre-defined scope and settings. Higher levels of (networked) autonomy can be reached by combining the automatic, aware and adaptive (and abstraction) properties [*].

An attempt at terms disambiguation

Automatic, automated, automation

that occurs without human intervention

Autonomous, autonomic

that manages itself without external intervention

Cognitive, cognition

that involves intellectual processes involved in gaining knowledge, comprehension, problem solving and decision making...

Self-organizing

that achieves steady state without external control

Our Goal

Devise an "artificial engineer"

that has the capability to problem-solve with minimal to no human intervention

Beyond Automation towards Autonomy

Evolving autonomous networks

Closed Loop (controller) : How to Apply Logic

Evolution: Make New Logic

"Codify-able process of creativity."

Online Experimentation: Validate Logic

Building Blocks

"All functionality deconstructed into small atomic modules"

Hybrid Intelligence

"The Al / ML / EL to use is just another Functional Building Block . We can use better one, once available"

Cognitive Loop

"We build the fundamental cognitive loop out of atomic modules"

B

Motivations
✓ "Standard" representation of Cognition
✓ Same concept can be applied everywhere ...and changed as needed.

Composition

"But not just anything can work together. So, we use specialized connectors to ensure modules dock only on to compatible ones."

Motivations

- Ensure API/functionality compatibility
- Keep the research space manageable
- Standardized and generalized interfaces improve reuse and replaceability of similar modules.

Online Evolution I Genetic mutation and recombination

" gives us the tools, we construct various loops, try them out, improve, so that utility improves

Online Evolution II Natural Selection "trial and error experimentation."

3. Geospiza parvula.

4. Certhidea olivasea.

Adapted from http://online.itp.ucsb.edu/plecture/nurse/oh/27.jpg

Meta Evolution Self reflective

"We construct our loop by means of another loop."

Motivations Autonomy means self-reflection and self-improvement (self-*) Flexibility to find best solution requires ability to adapt framework Separate control loop to ensure that supervision does not deteriorate.

Master-Evolution Layer **Controller Hierarchy** Master Evaluation Controller Data Meta-Evolution Laver Meta Evo Ctlr Antenna Tilt Meta Evo Ctlr -Evolution Laver Traffic Shaping "Just like a company Local Evo Ctlr#1 Antenna Tilt Antenna Tilt 8 upper level supervises Local Evo Ctlr#1 -Traffic Shaping Operation Layer and teach subordinates." Local Oper Ctlr #1 – Antenna Tilt Antenna Tilt Traffic Shaping - Antenna Tilt

R

Actions

- Antenna Tilt

Traffic Shaping

Putting it all Together

"Human's still produce the modules until we can get emergent behavior right."

Ecosystem

"You will not reach the moon by trying to flight your plane higher..."

Overview of autonomous networks standardization landscape

The need for AN standards

The need for standards is simple

- The problem and challenges are too big to be solved by individual initiatives
- Solutions will emerge from collaborative work and partnerships
- But global scale adoption will require interoperable systems

The key question is: What needs to be standardized?

- Communication interfaces between functional blocks and devices
- Resource models
- Service interfaces
- Common and consistent management principles and language
- Context- and goal-oriented management

Autonomous networking standardization

ITU-T Focus Group on Autonomous Networks

AN (pre-)standardization in IRTF and IETF

NMRG

- Autonomic Networking (2013-2014)
 - <u>RFC 7575</u> Autonomic Networking: Definitions and Design Goals
 - <u>RFC 7576</u> General Gap Analysis for Autonomic Networking
- Intent-based Networking (2016-Present)
 - <u>https://datatracker.ietf.org/group/nmrg/documents/</u>

ANIMA WG

•

- Reference model
 - <u>RFC 8993</u> A Reference Model for Autonomic Networking
- Control Loops
 - <u>https://datatracker.ietf.org/doc/html/draft-strassner-anima-control-loops-01</u>
 - Good overview of control loops state-of-the-art and requirements; expired document

OPSAWG

- <u>RFC 8969</u> A Framework for Automating Service and Network Management with YANG
- Network Telemetry Framework
 - <u>https://datatracker.ietf.org/doc/html/draft-ietf-opsawg-ntf-07</u>
- Service Assurance for Intent-based Networking Archietcture
 - <u>https://datatracker.ietf.org/doc/draft-claise-opsawg-service-assurance-architecture/</u>

Artificial Intelligence for Network and Service Automation

Joint evolution of AI and Ops

	2020 Raw AI & Automated Ops	2022-2023 Advanced AI & AI-assisted Ops	2025 Lean AI & Al-empowered Ops	Beyond 2025 Intuitive AI & Autonomous Ops
AI & Data	Limited view and use of AI potential Big dumb data	More diversified, network-adapted AI techniques Smarter data	Broad set of AI techniques for N&S environment Intelligent data	
Scale & Adoption	Use case-driven Isolated, small-scale solutions with limited re-use	Cross use cases Large scale application and penetration of Al-based N&S automation solutions	"Al-as-a-Service" Full scale deployment and applicability of Al-enabled, plug-n- play solutions	Zero-touch Al-Ops
Practice & Integration	Retrofit ML technologies for N&S automation Manually-intensive integration	Al know-how is leveraged for N&S automation Semi-automated design and integration	Designed with Al Seamless design and integration	Machine Reasoning Symbiotic Human-Al interaction Mission autonomy Transparent, trusted, open Al Reliable, robust and distributed Al
Confidence & Security	Controlled autonomy and confined in scope No Al-specific security measures	Towards operation autonomy Trust framework safeguards Al-based solutions Al-specific security techniques protect N&S operations	Towards mission autonomy Al continuously and reliably delivers on the business targets Guaranteed Al functional safety	
Standards & Regulation	Lack of standards Consultations with authorities and stakeholders	Emerging standards and basic interoperability First compliant AI-based N&S automation solutions	Comprehensive standards and increased interoperability Fully embedded policies and principles	

Standardization scope

Enable innovation and differentiation with AI in multi-vendor network and service management environment

Key enablers and functionality	Support for deployment diversity	Trust and adoption
Mediation between data sources and data processing, augmented with meta-data models and data governance	Data: data sources, their locations and characteristics (local, ephemeral), data distribution, data storage	On-par privacy and security environment; improvement and alignment to capabilities and constraints of Al-based solutions
Support for unified and expressive data formats to allow AI workflow automation and plug-and-play	Compute: computation elements locations, types and capabilities	Support for different levels of supervision and visibility for human operators
Coordination between multiple, distributed Al applications, ensuring compliance with intents, consistent end-to-end operational view and means to act on it	Operations: constraints and capabilities for various Al models training and inference options; connecting the Al applications to the orchestration and control end points	Support incremental evolution to AI/ML, integration of learnings from experience and deployments to the standardization process
Al models life-cycle management, re-usability of generated knowledge and acceleration of models deployment	Considering also other factors for regulatory and sustainable approach (energy, data sharing/replication, compute/data co-location)	Openness vs. trust dilemma: new disaggregated solutions add management complexity and call for more transparency and accountability

Key enabling areas

Relevant SDOs landscape

Generic concepts and core technologies for end-to-end Al-driven N&S automation

Vertical scenarios

5GACIA

5GAA I

ETSI ZSM (ENI)		Al & Data Analytics project	SG13 SIG/FGon Al/ML	
Generic AI enablers and related frameworks	Research challenges in AI for N&S management	Elements and procedures related to AI for Service Management	Specifications for machine learning (ML) for future networks, including interfaces, network architectures, protocols, algorithms and data formats	
Al-empowered end-to-end and cross- domain N&S automation solutions	Forum on latest advances, developments and practices	Collaborative projects (Catalysts)		

Domain-level adaptation of AI concepts and technologies

Fixed access, backhaul, transport		Radio access and mobile core		Virtualization, cloud and edge cloud	
proadband Forum AIM project		IETF	SA5 SA2 RANX	WG1 WG2 WG3	ETSI MEC NFV
		RAN and 5G Core management domain; RAN and 5G Core signaling plane	RAN optimization and management domain	Virtualized and cloud- native applications	

Ensure federated, harmonized and complementary specifications across the multi-SDO landscape

To go deeper...

Rakuten Mobile Innovation Studio website

https://netlab.mobile.rakuten.co.jp/

Vision paper: Towards a Truly Autonomous Network

https://netlab.mobile.rakuten.co.jp/assets/pdf/towards_a_truly_autonomous_network.pdf

ITU-T Focus Group on Autonomous Networks

https://www.itu.int/en/ITU-T/focusgroups/an/Pages/default.aspx

